GPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling
نویسندگان
چکیده
Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve positioning accuracy. Firstly, the basic mathematic models including the GPS/GLONASS observation equations, stochastic model, and receiver clock model are briefly introduced. Then datasets from several IGS stations equipped with high-stability atomic clocks are used for kinematic PPP tests. To investigate the performance of PPP, including the positioning accuracy and convergence time, a week of (1-7 January 2014) GPS/GLONASS data retrieved from these IGS stations are processed with different schemes. The results indicate that the positioning accuracy as well as convergence time can benefit from the receiver clock modeling. This is particularly pronounced for the vertical component. Statistic RMSs show that the average improvement of three-dimensional positioning accuracy reaches up to 30%-40%. Sometimes, it even reaches over 60% for specific stations. Compared to the GPS-only PPP, solutions of the GPS/GLONASS combined PPP are much better no matter if the receiver clock offsets are modeled or not, indicating that the positioning accuracy and reliability are significantly improved with the additional GLONASS satellites in the case of insufficient number of GPS satellites or poor geometry conditions. In addition to the receiver clock modeling, the impacts of different inter-system timing bias (ISB) models are investigated. For the case of a sufficient number of satellites with fairly good geometry, the PPP performances are not seriously affected by the ISB model due to the low correlation between the ISB and the other parameters. However, the refinement of ISB model weakens the correlation between coordinates and ISB estimates and finally enhance the PPP performance in the case of poor observation conditions.
منابع مشابه
Precise Point Positioning Using Combined GPS and GLONASS Observations
Precise Point Positioning (PPP) is currently based on the processing of only GPS observations. Its positioning accuracy, availability and reliability are very dependent on the number of visible satellites, which is often insufficient in the environments such as urban canyons, mountain and open-pit mines areas. Even in the open area where sufficient GPS satellites are available, the accuracy and...
متن کاملPrecise Point Positioning for timing
In recent years, many national timing laboratories have installed geodetic Global Positioning System receivers together with their traditional GPS/GLONASS Common View receivers and Two Way Satellite Time and Frequency Transfer equipments. Many of these geodetic receivers operate continuously within the International GNSS Service (IGS), and their data are regularly processed by IGS Analysis Cent...
متن کاملIncreasing Accuracy of Combined GPS and GLONASS Positioning using Fuzzy Kalman Filter
In this paper, combined GPS and GLONASS positioning systems are discussed and some solutions have been proposed to improve the accuracy of navigation. Global Satellite Navigation System (GNSS) is able to provide position, velocity and time with respect to coordinated universal time. GNSS positioning is based on received satellite signals, so its performance is highly dependent on the quality of...
متن کاملStatistical Characterization of GLONASS Broadcast Clock Errors and Signal-In-Space Errors
With more than 70 navigation satellites around the Earth, global navigation satellite systems (GNSS) users are fascinated to use multiple constellations to enhance positioning availability, accuracy, integrity, continuity, and robustness. As the Russian Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) has fully restored its constellation, not only does a combination of GLONASS and the...
متن کاملModeling and Assessment of GPS/BDS Combined Precise Point Positioning
Precise Point Positioning (PPP) technique enables stand-alone receivers to obtain cm-level positioning accuracy. Observations from multi-GNSS systems can augment users with improved positioning accuracy, reliability and availability. In this paper, we present and evaluate the GPS/BDS combined PPP models, including the traditional model and a simplified model, where the inter-system bias (ISB) i...
متن کامل